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King-Yuen Ng

Fermi National Accelerator Laboratory,� P.O. Box 500, Batavia, IL 60510

Abstract

The Autin-Wildner scheme [1] of implementing an interaction re-
gion (IR) with ��x = ��y using two quadrupoles of equal but opposite
strength is investigated. The impacts on chromaticities from quadrupole
strength, low beta, and clearance from IP to �rst quadrupole are stud-
ied.

I. INTRODUCTION

Speci�cations for a 2 TeV muon collider call for a round beam at the
point of collision [2]. Recently, Autin and Wildner [1] suggested a doublet
scheme of quadrupoles to achieve the low-betatron functions for a round beam.
The method is sketched in Fig. 1, where both the focusing and defocusing
quadrupoles have the same focal length f , and are considered to be thin. The

Figure 1: The Autin-Wildner doublet scheme at the IR.
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�rst quadrupole, say the focusing one, QF, is at a distance s from the IP.
It focuses the horizontal betatron function �x, while it increases the rate of
divergence of the vertical betatron function �y. The second quadrupole QD
is defocusing and positioned at a distance d from QF. It reverses the rise of
�y. The Autin-Wildner theorem says that, if the distance d between the two
quadrupoles satis�es

f =
p
sd ; (1.1)

then, at a distance s downstream from QD, the two betatron functions are
equal and their slopes obey the relation,

�x + �y = 0 : (1.2)

The proof of this theorem is straightforward but rather tedious. In this pa-
per, we will study some general properties of the Autin-Wildner scheme: its
feasibility and how the chromaticities are a�ected by the low-beta value at
the IP, the quadrupole strength, and the clearance between the IP and �rst
quadrupole. Although thin lenses are used in this model, the overall con-
clusions of our study should not be altered much when using a thick-lens
calculation; therefore our results should serve as some guide lines in the actual
design.

II. MINIMUM QUADRUPOLE LENGTH

The defocusing quadrupole will experience the largest betatron value and
therefore have the largest aperture. If we require a 5-sigma aperture for the
beam, then the half aperture of the quadrupole is given by

y = 5

s
�yD�

�
; (2.1)

where the unnormalized rms emittance � of the beam is related to the normal-
ized emittance by

� =
�N
�

; (2.2)

with � and  being the relativistic parameters of the beam. The vertical
betatron function �yD at QD can be derived using the relation of Eq. (1.1):

�yD = ��
 
1 +

f

s

!
2

+
s2

��

 
1 +

f

s
+

f2

s2

!
2

: (2.3)

With the pole-tip �eld B, the maximum �eld gradient of the quadrupole is
therefore G = B=y, and the maximum quadrupole strength is

1

f
=

GL

(B�)
=

BL

5(B�)

s
�

�yD�
; (2.4)
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where (B�) is rigidity of the beam and L the length of the thin quadrupoles.
For simplicity, let us de�ne a parameter

� =
BL

5(B�)

r
�

�
=

q
�yD

f
(2.5)

to denote the quadrupole length. Using Eqs. (2.3) and (2.4), one arrives at

� =

q
��2(f + s)2 + (f2 + fs+ s2)2p

��fs
: (2.6)

In the case where the quadrupoles are extremely strong; i.e., f � s, the
separation between the quadrupoles d = f2=s ! 0, and the vertical betatron
function at QD is just given by the simple quadratic expression

�yD = �� +
s2

��
: (2.7)

Then we have

� =

q
�yD

f
! s

f
p
��

: (2.8)

On the other extreme, when f � s, the focusing quadrupole is so weak that it
does not signi�cantly a�ect the vertical betatron function �y, the defocusing
quadrupole, being equal in strength to the focusing one, is also weak and it
can only reverse the growth of �y when the latter becomes very large. This is
because the bending power of a quadrupole is given by �� = �=f . Here, the
distance of QD from the IP is

s+ d � d =
f2

s
; (2.9)

so that �yD can be computed according to Eq. (2.7), and we obtain

� =

q
�yD

f
! f

s
p
��

: (2.10)

We learn from Eqs. (2.8) and (2.10) that �!1 as f !1 or f ! 0. Thus,
not all quadrupole lengths are possible and there is a minimum length.

In general, we do not want to keep s constant. Instead, we like to keep the
distance s0 from the IP to the front end of the �rst quadrupole constant. In
other words,

s = s0 +
L

2
; (2.11)
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and Eq. (2.10) is an implicit function of the quadrupole length. To �nd the
minimum quadrupole length, we equate d�=df to zero to obtain

f = (��2s+ s3)1=3 � s : (2.12)

This implies

�min � 3p
��

; (2.13)

or

Lmin � 15(B�)

B

s
�

���
: (2.14)

It is important to note that the minimum allowable quadrupole length is in-
dependent of s0.

Let us study the situation of a low-beta of �� = 3 mm and a 2 TeV muon
beam with normalized emittance �N = 50 � 10�6� m. If permanent magnets
with a maximum pole-tip �eld of B = 1 T are used, we �nd immediately
that the minimum quadrupole length is Lmin = 93:9 m, which implies that
such magnets are too weak to be practical in building the IR. Even with
conventional magnets and boosting the maximum �eld to B = 2 T, Lmin =
47:0 m is still too long to be practical.

Now, let us consider the strongest superconducting magnets which have a
pole-tip �eld of 9.5 T. We obtain Lmin = 9:88 m. The distance d between the
centers of the quadrupoles must be larger than L, or obviously the physical
placement of the quadrupoles will not be possible. For a clearance of s0 = 6:5 m
between the IP and the �rst quadrupole, the quadrupole length L and the
quadrupole separation d are plotted as functions of quadrupole focal length f
in Fig. 2. We see that the physical allowable region starts at f > 10:07 m and
the quadrupole length changes very slowly about its minimum value.

III. CHROMATICITY

Since the vertical betatron function will be much larger than the horizontal,
the vertical chromaticity will be larger also. In this simple model, the vertical
chromaticity receives its contribution from the defocusing quadrupole only and
is given by

�y = ��yD
4�f

= ���2(f + s)2 + (f2 + fs+ s2)2

4���s2f
: (3.1)

We can see with the help of Eq. (2.3) that �y ! �1 regardless of whether
f ! 0 or 1. Thus, the chromaticity has a minimum also. In Fig. 2, the
chromaticity is plotted as dots. It is clear that to minimize chromaticity, we
must choose a quadrupole focal length of � 10 m and a quadrupole focal
length as small as possible. In fact, it is true in general that, to minimize
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Figure 2: Quadrupole length and chromaticity versus quadrupole focal length
when �� = 3 mm and IP clearance s0 = 6:5 m.

chromaticity, we should choose f at the position in the plot when L crosses d.
In other words, the distance between the two quadrupoles must be made as
short as possible.

IV. CLEARANCE BETWEEN IP AND QUADRUPOLE

For the detector acceptance, an open angle of � <� � 150 mrad at the IP
is required. Therefore, the clearance between the IP and the �rst quadrupole
can actually be smaller. If the IR quadrupoles can be placed closer to the
IP, the betatron functions at the quadrupoles will be smaller. However, for
smaller �x, the bending power of a quadrupole will not be so e�cient. This
can be seen as follows. At the center of the �rst IR quadrupole,

�x � s2

��
: (4.1)

The maximum strength of QF is

1

f
=

BL

5(B�)

s
�

��x
: (4.2)

The bending e�ciency of the quadrupole can be de�ned as the change of the
Twiss parameter �. Therefore, at the �rst IR quadrupole,

��x =
�x
f
� BL

5(B�)

s
�

���
s : (4.3)
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Figure 3: Quadrupole length and chromaticity versus quadrupole focal length
when �� = 3 mm and IP clearance s0 = 3:0 m.

Nevertheless, the vertical chromaticity which is given by �y at QD is in general
somewhat smaller when s0 is shortened. In Fig. 3, we make a similar plot with
s0 shortened from 6.5 m to 3 m. We see that the maximum possible strength
of the quadrupoles is increased so that the focal length becomes 8.9 m. The
length of the quadrupoles is still around 10 m. The chromaticity is reduced
from �y = �2600 to �2200. The reduction is only about 15%, although s0 has
been reduced from 6.5 m to 3 m. However, if we use the distance from the IP to
the center of QF, this distance is actually reduced from s = s0+L=2 = 11:5 m
to 8.5 m only.

In passing, it is worth pointing out that the natural chromaticity of an IR
with �� = 3 mm and s0 = 6:5 is in practice of order �6000 [3], much larger
than the value of �2600 quoted above. This is because due to the limitation
of the quadrupole strengths, the doublet scheme is not able to lower the Twiss
parameters to reasonable values to match to a normal cell or module of the
collider ring. More quadrupoles are required and this raises the chromaticities.

V. LARGER LOW-BETAS

From Eq. (3.1), it is clear that chromaticity will be reduced if �� is in-
creased, the reason being that �y which is inversely proportional to ��, in-
creases less rapidly. We perform the same plot of quadrupole length and
vertical chromaticity versus the quadrupole focal length in Fig. 4, for an IR
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Figure 4: Quadrupole length and chromaticity versus quadrupole focal length
when �� = 1 cm and IP clearance s0 = 6:5 m.

with �� = 1 cm and IP clearance s0 = 6:5 m. We see that the quadrupole
length is around 5.5 m long and the focal length can be made as short as
f = 7:2 m, which is shorter than the distance from the IP to the center of
the �rst quadrupole, s = s0 + L=2 = 9:25 m. This implies that the �rst
quadrupole is capable of bending �x by so much that �x after passing through
the quadrupole becomes positive, so that �x starts dropping down after exiting
this �rst quadrupole. In contrast, in the 3-mm low-beta IR described in Sec. II
above, the �rst quadrupole has fmin = 10:07 m, while s = s0 + L=2 = 11:4 m,
and �x actually continues to increase after leaving the focusing quadrupole.
Later, after passing through the defocusing quadrupole �x will start to sky-
rocket and another focusing quadrupole will be necessary to reverse its slope
eventually. In other words, this Autin-Wildner doublet scheme is actually not
feasible in the 3-mm low-beta IR.

According to Fig. 4, a vertical chromaticity as low as �500 can be achieved
for the 1-cm IR. In fact, in an actual design [4], we did succeed in obtaining
such an IR with �y � �500.

Similarly, we plot in Fig. 5, the quadrupole length and vertical chromatic-
ity as functions of quadrupole focal length when the low-beta is �� = 3 cm.
Now the quadrupole length can be made about 3.2 m and the quadrupole focal
length fmin = 5:2 m. Here, the �rst IR quadrupole is very strong. The hori-
zontal betatron function �x drops very fast after passing through the focusing
quadrupole and does not rise signi�cantly even after passing through the defo-
cusing quadrupole, so that when it crosses the vertical betatron function at a
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distance 2s+d from the IP, where �x+�y = 0, both j�xj and j�yj are small and
can be matched easily to ordinary cells or modules of the collider. In contrast,
in the situation of the 3-mm low-beta IR, although we still have �x + �y = 0
when �x and �y cross according to Eq. (1.2), both j�xj and j�yj may be of
order several thousands. Therefore, many more quadrupoles will be needed
to control the betatron functions after this point, and chromaticities increase.
Going back to the 3-cm low-beta IR, from Fig. 5 the vertical chromaticity can
be as low as � �140. This prediction was also realized in an actual design [4].
There, we deviate from the Autin-Wildner model by employing a stronger fo-
cusing quadrupole and a weaker defocusing quadrupole, so that the horizontal
betatron function continues to drop even after passing through the defocusing
quadrupole. In this way, both �x and �y can be controlled more easily.

Figure 5: Quadrupole length and chromaticity versus quadrupole focal length
when �� = 3 cm and IP clearance s0 = 6:5 m.
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